
Expandable and Cost-Effective
Network Structures for Data Centers

Using Dual-Port Servers
Deke Guo, Member, IEEE, Tao Chen, Member, IEEE, Dan Li, Member, IEEE, Mo Li, Member, IEEE,

Yunhao Liu, Senior Member, IEEE, and Guihai Chen, Senior Member, IEEE

Abstract—A fundamental goal of data center networking is to efficiently interconnect a large number of servers with the low equipment

cost. Several server-centric network structures for data centers have been proposed. They, however, are not truly expandable and

suffer a low degree of regularity and symmetry. Inspired by the commodity servers in today’s data centers that come with dual port, we

consider how to build expandable and cost-effective structures without expensive high-end switches and additional hardware on

servers except the two NIC ports. In this paper, two such network structures, called HCN and BCN, are designed, both of which are of

server degree 2. We also develop the low overhead and robust routing mechanisms for HCN and BCN. Although the server degree is

only 2, HCN can be expanded very easily to encompass hundreds of thousands servers with the low diameter and high bisection width.

Additionally, HCN offers a high degree of regularity, scalability, and symmetry, which conform to the modular designs of data centers.

BCN is the largest known network structure for data centers with the server degree 2 and network diameter 7. Furthermore, BCN has

many attractive features, including the low diameter, high bisection width, large number of node-disjoint paths for the one-to-one traffic,

and good fault-tolerant ability. Mathematical analysis and comprehensive simulations show that HCN and BCN possess excellent

topological properties and are viable network structures for data centers.

Index Terms—Data center networking, network structures, interconnection networks

Ç

1 INTRODUCTION

MEGA data centers have emerged as infrastructures for
building online applications, such as the web search,

e-mail, and online gaming, as well as infrastructural
services, such as GFS [1] and BigTable [2]. Inside a data
center, large number of servers are interconnected using a
specific data center networking (DCN) [3], [4], [5], [6], [7]
structure with design goals. They include the low equipment

cost, high network capacity, support of incremental expan-
sion, and robustness.

A number of novel DCN network structures are
proposed recently and can be roughly divided into two
categories. One is switch centric, which organizes switches
into structures other than tree and puts the interconnection
intelligence on switches. Fat-Tree [3], VL2 [8] fall into such a
category. The other is server centric, which puts the
interconnection intelligence on servers and uses switches
only as cross bars. DCell [4], BCube [7], FiConn [5], [6],
MDCube [9], and uFix [10] fall into the second category.
Among others, a server-centric topology has the following
advantages. First, in current practice, servers are more
programmable than switches, so the deployment of new
DCN topology is more feasible. Second, multiple NIC ports
in servers can be used to improve the end-to-end
throughput as well as the fault-tolerant ability.

For DCell and BCube, their nice topological properties
and efficient algorithms have been derived at the cost as
follows: They use more than two ports per server,
typically four, and large number of switches and links,
so as to scale to a large server population. If they use
servers with only two ports, the server population is very
limited and cannot be enlarged because they are at most
two levels. When network structures are expanded to one
higher level, DCell and BCube add one NIC and link for
each existing server, and BCube has to be appended large
number of additional switches. Note that although
upgrading servers like installing additional NICs is cheap
in terms of the equipment cost, the time and human
power needed to upgrade tens or hundreds of thousands
servers are very expensive.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013 1303

. D. Guo is with the Key Laboratory for Information System Engineering,
School of Information System and Management, National University of
Defense Technology, Changsha 410073, P.R. China.
E-mail: guodeke@gmail.com.

. T. Chen is with the Key Laboratory for Information System Engineering,
School of Information System and Management, National University of
Defense Technology, Changsha 410073, P.R. China.
E-mail: emilchenn@gmail.com.

. D. Li is with the Department of Computer Science, Tsinghua University,
9-402, East Main Building, Beijing 100084, P.R. China.
E-mail: tolidan@tsinghua.edu.cn.

. M. Li is with the School of Computer Engineering, Nanyang Technological
University, Singapore. E-mail: limo@ntu.edu.sg.

. Y. Liu is with the TNLIST and School of Software, TNLIST, Tsinghua
University, Beijing 100084, P.R. China, and the Computer Science
Department, Hong Kong University of Science and Technology, Hong
Kong, P.R. China. E-mail: liu@cse.ust.hk.

. G. Chen is with the Shanghai Key Lab of Scalable Computing and Systems,
Department of Computer Science and Engineering, Shanghai Jiaotong
University, Shanghai 200240, P.R. China.
E-mail: gchen@nju.edu.cn, gchen@cs.sjtu.edu.cn.

Manuscript received 31 Jan. 2011; revised 9 Apr. 2012; accepted 12 Apr. 2012;
published online 19 Apr. 2012.
Recommended for acceptance by S. Dolev.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-01-0072.
Digital Object Identifier no. 10.1109/TC.2012.90.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

Such topologies, however, are not truly expandable. A
network is expandable if no changes with respect to the
node’s configuration and link connections are necessary
when it is expanded. This may cause negative influence on
applications running on all of the existing servers during
the process of topology expansion. We, thus, need to design
an expandable and cost-effective network structure that
works for commodity servers with constant NIC ports and
low-end switches. Other benefits by solving the problem are
multifaceted. First, we do not use expensive high-end
switches, which are widely used today. Second, it can offer
an easy-to-build testbed at a university or institution
because those data center infrastructures may only be
afforded by a few cash-rich companies.

1.1 Motivation and Contributions

Without loss of generality, we focus on the interconnection
of a large number of commodity dual-port servers because
such servers are already available in current practice. It is
challenging to interconnect a large population of such
servers in data centers, because we should also guarantee
the low diameter and the high bisection width. FiConn is
one of such topologies but suffers a low degree of regularity
and symmetry.

In this paper, we first propose a hierarchical irregular
compound network, denoted as HCN, which can be
expanded by only adding one link to a few number of
servers. Moreover, HCN offers a high degree of regularity,
scalability, and symmetry, which conform to the modular
designs of data centers. Inspired by the smaller network
size of HCN compared to FiConn, we further study the
degree/diameter problem [11], [12] in the scenario of
building a scalable network structure for data centers using
dual-port servers.

Given the maximum node degree and network diameter,
the degree/diameter problem aims to determine the largest
graphs. Specifically, the degree/diameter problem here is to
determine desirable DCNs that satisfy the aforementioned
design goals and support the largest number of servers
under the two constraints as follows: First, the basic
building block is n servers that are connected to a n-port
commodity switch. Second, two basic building blocks are
interconnected by a link between two servers each in one
building block without connecting any two switches
directly. Although many efforts [13], [14] have been made
to study the degree/diameter problem in graph theory, it is
still open in the field of DCN.

We then propose BCN, a Bidimensional Compound
Network for data centers, which inherits the advantages of
HCN. BCN is a level-i irregular compound graph recur-
sively defined in the first dimension for i � 0, and a level
one regular compound graph in the second dimension. In
each dimension, a high-level BCN employs a one lower
level BCN as a unit cluster and connects many such clusters
by means of a complete graph. BCN of level one in each
dimension is the largest known network structure for data
centers, with the server degree 2 and the network diameter
7. In this case, the order of BCN is significantly larger than
that of FiConn(n; 2), irrespective of the value of n. For
example, if 48-port switches are used, BCN of level one in
each dimension offers 787,968 servers, while a level-2

FiConn only supports 361,200 servers. Besides such
advantages, BCN has other attractive properties, including
the low diameter and cost, high bisection width, high path
diversity for the one-to-one traffic, good fault-tolerant
ability, and relative shorter fault-tolerant path than FiConn.

The major contributions of this paper are summarized as
follows: First, we propose two novel design methodologies
for HCN and BCN by exploiting the compound graph. They
possess the good regularity and expandability that help
reduce the cost of further expansions and are especially
suitable for large-scale data centers. Second, BCN of level
one in each dimension offers the largest known network
structure for data centers with the server degree 2 and the
network diameter 7. Third, HCN and BCN use distributed
fault-tolerant routing protocols to handle those representa-
tive failures in data centers. Moreover, HCN and BCN can
be used as the intracontainer and intercontainer network
structures for designing a mega data center in a modular
way like MDCube and uFix.

1.2 Organization of Paper

The rest of this paper is organized as follows: Section 2
introduces the related work. Section 3 describes the
structures of HCN and BCN. Section 4 presents the general
and fault-tolerant routing algorithms for HCN and BCN.
Section 5 evaluates the topological properties and routing
protocols of HCN and BCN through analysis and simula-
tions. Section 6 discusses other design issues in HCN and
BCN. Finally, Section 7 concludes this paper and discusses
our future work..

2 RELATED WORK

2.1 Constructing Large Interconnection Networks

Hierarchical network is a natural way to construct large
interconnection networks, where many small basic net-
works in the lower level are interconnected with higher
level constructs. In a hierarchical network, lower level
networks support local communications, while higher level
networks support remote communications. The compound
graph is suitable for large-scale systems due to its good
regularity and expandability [15].

Definition 1. Given two regular graphs G and G1, a level-1
regular compound graph GðG1Þ is obtained by replacing each
node of G by a copy of G1 and replacing each link of G by a
link that connects two corresponding copies of G1.

A level-1 regular compound graph GðG1Þ employs G1 as
a unit cluster and connects many such clusters by means of
a regular graph G. In the resultant graph, the topology of G
is preserved and only one link is inserted to connect two
copies of G1. An additional remote link is associated to each
node in a cluster. For each node in the resultant network,
the node degree is identical. A constraint must be satisfied
for the two graphs to constitute a regular compound graph.
The node degree of G must be equal to the number of nodes
in G1. An irregular compound graph is obtained while the
order of G1 is not necessarily equal to the node degree of G.

A level-1 regular compound graph can be extended to
level-i (i � 2) recursively. For ease of explanation, we

1304 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013

consider the case that the regular G is a complete graph. A
level-2 regular compound graph G2ðG1Þ employs GðG1Þ as
a unit cluster and connects many such clusters using a
complete graph. More generically, a level-i (i > 0) regular
graph GiðG1Þ adopts a level-ði� 1Þ regular graph Gi�1ðG1Þ
as a unit cluster and connects many such clusters by a
complete graph. Consequently, the node degree of a level-i
regular compound graph increases by i than the node
degree of G1. In addition, G0ðG1Þ ¼ G1.

2.2 Interconnection Structures for Data Centers

We discuss four representative network structures, includ-
ing Fat-Tree [3], DCell [4], FiConn [6], and BCube [7].

At the core level of the Fat-Tree structure, there are
ðn=2Þ2 n-port switches each of which has one port
connecting to one of n pods, each containing two levels
of n=2 switches, i.e., the edge level and the aggregation
level. Each n-port switch at the edge level uses its half
ports to connect n=2 servers and another half ports to
connect the n=2 aggregation level switches in the pod.
Thus, the Fat-Tree structure can support n3=4 servers.
Fig. 1 gives an example of a Fat-Tree with n ¼ 4 and three
levels of switches.

HCN and BCN use only the lowest level of switches by
putting the interconnection intelligence on servers; hence,
the number of used switches is much smaller than Fat-Tree.
Therefore, HCN and BCN significantly reduce the cost on
switches. In addition, the number of servers Fat-Tree
accommodates is limited by the number of switch ports,
given the three levels of switches [6]. HCN and BCN do not
suffer such a limitation and can be extended to accom-
modate large number of servers, although each server has
only two ports.

DCell is a new structure that has many desirable features
for data centers. Any high-level DCell is constituted by
connecting given number of the next lower level DCells.
DCells at the same level are fully connected with each other.
DCell0 is the basic building block in which n servers are
connected to a n-port commodity switch. Additionally,

DCelli is a level-i regular compound graph GiðDCell0Þ
constituted recursively for any i � 1. Fig. 2 illustrates an

example of DCell1 with n ¼ 4.
HCN and BCN are also server-centric structures like

DCell, but differ in several aspects. First, the server degree

of a DCellk is kþ 1, but that of HCN and BCN are always 2.

Consequently, the wiring cost is less than that of DCell

because each server uses only two ports. Second, no other

hardware cost is introduced on a server in HCN and BCN

because they use existing backup port on each server for

interconnection. If DCell uses servers with only two ports,

the server population is very limited since DCell is at most

two levels. Third, when network structures are expanded to

one higher level, DCell adds one NIC and wiring link for

each existing server, while HCN and BCN only append one

wiring link to a constant number of servers. That is, DCell is

not truly expandable.
FiConn shares the similar design principle with HCN

and BCN to interconnect large number of commodity dual-

port servers, but differs in several aspects. First, the

topology of FiConn suffers a low degree of regularity and

symmetry. Second, FiConn must append one wiring link to

more and more servers when it was expanded to higher

level topologies. HCN, however, only appends one wiring

link to a constant number of servers during its expansion

process.
BCube is proposed for container-based data centers, as

shown in Fig. 3. BCube0 is simply n servers connecting to

a n-port switch. BCubek (k � 1) is constructed from

n BCubek�1s and nk n-port switches. Each server in a

BCubek has kþ 1 ports. Servers with multiple NIC ports

are connected to multiple levels of miniswitches, but such

switches are not directly connected. The server degrees of

HCN and BCN are constantly 2, while BCube must

allocate each server more NIC ports. In addition, given

the same number of servers, BCube uses much more

miniswitches and links than HCN and BCN. Actually,

BCube is an emulation of the generalized Hypercube [16].
Guo et al. proposed a malfunction detection scheme that

can detect improperly connected cables and pinpoint their

locations, in BCube data centers [17]. The key insight is to

analyze the topology properties of the data center. Such a

scheme can also be applied to our network structures, HCN

and BCN. More detailed discussion on the miswiring

problem, however, we leave as one of our future work.

GUO ET AL.: EXPANDABLE AND COST-EFFECTIVE NETWORK STRUCTURES FOR DATA CENTERS USING DUAL-PORT SERVERS 1305

Fig. 1. A Fat-Tree network structure with n ¼ 4.

Fig. 2. A DCell1 network structure with n ¼ 4.

Fig. 3. A BCube(4,1) network structure.

3 THE BCN NETWORK STRUCTURE

We propose two expandable network structures, HCN and
BCN, which build scalable and low-cost data centers using
dual-port servers. For each structure, we start with the
physical structure, and then propose the construction
methodology. Table 1 lists the notations used in the rest
of this paper.

3.1 Hierarchical Irregular Compound Networks

For any given h � 0, we denote a level-h irregular
compound network as HCNðn; hÞ. HCN is a recursively
defined structure. A high-level HCNðn; hÞ employs a low
level HCNðn; h� 1Þ as a unit cluster and connects many
such clusters by means of a complete graph. HCNðn; 0Þ is
the smallest module (basic construction unit) that consists
of n dual-port servers and a n-port miniswitch. For each
server, its first port is used to connect with the miniswitch
while the second port is employed to interconnect with
another server in different smallest modules for constitut-
ing larger networks. A server is available if its second port
has not been connected.

HCNðn; 1Þ is constructed using n basic modules
HCNðn; 0Þ. In HCNðn; 1Þ, there is only one link between
any two basic modules by connecting two available servers
that belong to different basic modules. Consequently, for
each HCNðn; 0Þ inside HCNðn; 1Þ all of the servers are
associated with a level-1 link except one server that is
reserved for the construction of HCNðn; 2Þ. Thus, there are
n available servers in HCNðn; 1Þ for further expansion at a
higher level. Similarly, HCNðn; 2Þ is formed by n level-1
HCNðn; 1Þs, and has n available servers for interconnection
at a higher level.

In general, HCNðn; iÞ for i � 0 is formed by

n HCNðn; i� 1Þs;

and has n available servers each in one HCNðn; i� 1Þ for
further expansion. According to Definition 1, HCNðn; iÞ acts
as G1 and a complete graph of n nodes acts as G. Here,
GðG1Þ produces an irregular compound graph because the
number of available servers in HCNðn; iÞ is n while the

node degree of G is n� 1. To facilitate the construction of
any level-h HCN, we introduce Definition 2 as follows:

Definition 2. Each server in HCNðn; hÞ is assigned a label
xh � � �x1x0, where 1 � xi � n for 0 � i � h. Two servers
xh � � �x1x0 and xh � � �xjþ1xj�1x

j
j are connected only if

xj 6¼xj�1, xj�1 ¼ xj�2 ¼ � � � ¼ x1 ¼ x0 for some 1 � j � h,
where 1 � x0 � � and xjj represents j consecutive xjs. Here,
n servers are reserved for further expansion only if xh ¼
xh�1 ¼ � � � ¼ x0 for any 1 � x0 � n.

In any level-h HCN, each server achieves a unique label
produced by Definition 2 and is appended a link to its
second port. Fig. 4 plots an example of HCNð4; 2Þ con-
structed according to Definition 2. HCNð4; 2Þ consists of
four HCNð4; 1Þs and a HCN (4, 1) has four HCN(4, 0)s. The
second port of four servers, 111, 222, 333, and 444, are
reserved for further expansion.

In a level-h HCN, each server recursively belongs to
level-0, level-1, level-2, ..., level-h HCNs, respectively.
Similarly, any lower level HCN belongs to many higher
level HCNs. To characterize such a property, let xi indicate
the order of HCNðn; i� 1Þ, containing a server xh � � �x1x0,
among all of the level-ði� 1Þ HCNs of HCNðn; iÞ for
1 � i � h. We further use xhxh�1 � � �xi (1 � i � h) as a
prefix to indicate HCNðn; i� 1Þ that contains such a server
in HCNðn; hÞ. We use the server 423 as an example. Here,
x1 ¼ 2 indicates the second HCNð4; 0Þ in HCNð4; 1Þ that
contains such a server. Such a HCNð4; 0Þ contains the
servers 421, 422, 423, and 444. Here, x2 ¼ 4 indicates the
fourth level-1 HCN in a level-2 HCN that contains such a
server. Thus, x2x1 ¼ 42 indicates the level-0 HCN that
contains the server 423 in a level-2 HCN.

In summary, HCN owns two topological advantages, i.e.,
expandability and equal server degree, with the benefits of
easy implementation and low cost. Additionally, HCN
offers a high degree of regularity, scalability, and symmetry.
Its network order, however, is less than that of FiConn in the
same setting and we, thus, study the degree/diameter
problem of DCN.

1306 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013

TABLE 1
Summary of Main Notations

Fig. 4. An example of HCNðn; hÞ, where n ¼ 4 and h ¼ 2.

3.2 BCN Physical Structure

BCN is a multilevel irregular compound graph recursively

defined in the first dimension, and a level one regular
compound graph in the second dimension. In each
dimension, a high-level BCN employs a one low-level

BCN as a unit cluster and connects many such clusters by
means of a complete graph.

Let BCNð�; �; 0Þ denote the basic building block, where

�þ� ¼ n. It has n servers and one n-port miniswitch. All of
the servers are connected to the miniswitch using their first
ports and are partitioned into two disjoint groups, referred

to as the master and slave servers. Here, servers really do not
have master/slave relationship in functionality. The moti-
vation of such a partition is just to ease the presentation. Let

� and � be the number of master servers and slave servers,
respectively. As discussed later, the second port of master

servers and slave servers are used to constitute larger BCNs
in the first and second dimensions, respectively.

3.2.1 Hierarchical BCN in the First Dimension

For any given h � 0, we use BCNð�; �; hÞ to denote a level-h

BCN formed by all of the master servers in the first
dimension. For any h > 1, BCNð�; �; hÞ is an irregular
compound graph, where G is a complete graph with

� nodes while G1 is BCNð�; �; h� 1Þ with � available
master servers. It is worth noticing that, for any h � 0,

BCNð�; �; hÞ still has � available master servers for further
expansion, and is equivalent to HCNð�; hÞ. The only
difference is that each miniswitch also connects � slave

servers besides � master servers in BCNð�; �; hÞ.

3.2.2 Hierarchical BCN in the Second Dimension

There are � available slave servers in the smallest module
BCNð�; �; 0Þ. In general, there are sh ¼ �h�� available slave

servers in any given BCNð�; �; hÞ for h � 0. We study how
to utilize those available slave servers to expand

BCNð�; �; hÞ from the second dimension. A level-1 regular
compound graph, GðBCNð�; �; hÞÞ, is a natural way to
realize such a goal. It uses BCNð�; �; hÞ as a unit cluster and

connects sh þ 1 copies of BCNð�; �; hÞ by means of a
complete graph using the second ports of all of available
slave servers. The resultant GðBCNð�; �; hÞÞ cannot be

further expanded in the second dimension because it has
no available slave servers. It, however, still can be expanded

in the first dimension without destroying the existing
network.

Theorem 1. The total number of slave servers in any given

BCNð�; �; hÞ is

sh ¼ �h��: ð1Þ

Proof. We know that any given BCNð�; �; iÞ is built with

� copies of a lower level BCNð�; �; i� 1Þ for 1 � i.
Thus, it is reasonable that BCNð�; �; hÞ has �h smallest
module BCNð�; �; 0Þs. In addition, each smallest

module has � slave servers. Consequently, the total
number of slave servers in BCNð�; �; hÞ is sh ¼ ���h.
Thus, proved. tu

Fig. 5 plots an example of GðBCNð4; 4; 0ÞÞ. The four
slave servers connected with a miniswitch in BCNð4; 4; 0Þ
is the unit cluster. A complete graph is used to connect five
copies of BCNð4; 4; 0Þ. Consequently, only one remote link
is associated with each slave server in a unit cluster. Thus,
the node degree is two for each slave server in the
resultant network.

3.2.3 Bidimensional Hierarchical BCN

After designing BCNð�; �; hÞ and GðBCNð�; �; hÞÞ, we
design a scalable bidimensional BCN formed by both
master and slave servers. Let BCNð�; �; h; �Þ denote a
bidimensional BCN, where h denotes the level of BCN in
the first dimension, and � denotes the level of BCN that is
selected as the unit cluster in the second dimension.

In this case, BCNð�; �; 0Þ consists of � master servers,
� slave servers and one miniswitch, i.e., it is still the
smallest module of any level bidimensional BCN.

To increase servers in data centers on-demand, it is
required to expand an initial lower-level BCNð�; �; hÞ from
the first or second dimension without destroying the
existing structure. A bidimensional BCN is always
BCNð�; �; hÞ as h increases when h < �. In such a scenario,
the unit cluster for expansion in the second dimension has
not been formed. When h increases to �, we achieve
BCNð�; �; �Þ in the first dimension and then expand it
from the second dimension using the construction method
of GðBCNð�; �; �ÞÞ in Section 3.2.2. In the resultant
BCNð�; �; �; �Þ, there are ���� þ 1 copies of BCNð�; �; �Þ
and � available master servers in each BCNð�; �; �Þ. A
sequential number u is employed to identify BCNð�; �; �Þ
among �� �� þ 1 ones in the second dimension, where u
ranges from 1 to ���� þ 1. Fig. 5 plots an example of
BCNð4; 4; 0; 0Þ consisting of five BCNð4; 4; 0Þs, where
h ¼ r ¼ 0. It is worth noticing that BCNð�; �; �; �Þ cannot
be further expanded in the second dimension since it has
no available slave servers. It, however, still can be
expanded in the first dimension without destroying the
existing network in the following way.

We further consider the case that h exceeds �. That is,
each BCNð�; �; �Þ in BCNð�; �; �; �Þ becomes BCNð�; �; hÞ
in the first dimension once h exceeds �. There are �h��

homogeneous BCNð�; �; �Þs inside each BCNð�; �; hÞ. Thus,
we use a sequential number v to identify BCNð�; �; �Þ in
each BCNð�; �; hÞ in the first dimension, where v ranges
from 1 to �h�� . Thus, the coordinate of each BCNð�; �; �Þ in
the resultant structure is denoted by a pair of v and u.

GUO ET AL.: EXPANDABLE AND COST-EFFECTIVE NETWORK STRUCTURES FOR DATA CENTERS USING DUAL-PORT SERVERS 1307

Fig. 5. A GðBCNð4; 4; 0ÞÞ structure that consists of slave servers in five
BCNð4; 4; 0Þs in the second dimension.

It is worth noticing that only those BCNð�; �; �Þs with

v ¼ 1 in the resultant structure are connected by a complete

graph in the second dimension and form the first

GðBCNð�; �; �ÞÞ. Consequently, messages between any

two servers in different BCNð�; �; �Þs with the same value

of v except v ¼ 1 must be relayed by related BCNð�; �; �Þ in

the first GðBCNð�; �; �ÞÞ. Thus, the first GðBCNð�; �; �ÞÞ
becomes a bottleneck of the resultant structure. To address

such an issue, all of BCNð�; �; �Þs with v ¼ i are also

connected by means of a completed graph so as to produce

the ith GðBCNð�; �; �ÞÞ, for other values of v besides 1. By

now, we achieve BCNð�; �; h; �Þ in which each GðBCNð�;
�; �ÞÞ is a regular compound graph, where G is a complete

graph with ���� nodes and G1 is BCNð�; �; �Þ with �� ��
available slave servers.

Fig. 6 plots BCNð4; 4; 1; 0Þ formed by all of the master

and slave servers from the first and second dimensions.

Note that only the first and third BCNð4; 4; 1Þs are plotted,

while other three BCNð4; 4; 1Þs are not shown due to page

limitations. We can see that BCNð4; 4; 1; 0Þ has five homo-

geneous BCNð4; 4; 1Þs in the second dimension and four

homogeneous GðBCNð4; 4; 0ÞÞs in the first dimension. In the

resultant structure, the node degree of each slave server is

two while that of each master server is at least one and at

most two.
Although the wiring is relatively easy because only

constant ports per server are used for interconnection, the

wiring complexity is still nontrivial in practice. Fortu-

nately, the packaging and wiring technologies in DCube,

FiConn, and MDCube can help tackle the wiring problem

of our proposals.

3.3 The Construction Methodology of BCN

A higher level BCN network can be built by an

incremental expansion using one lower level BCN as a

unit cluster and connecting many such clusters by means

of a complete graph.

3.3.1 In the Case of h < �

In such a case, BCNð�; �; hÞ can be achieved by the
construction methodology of HCNð�; hÞ in Section 3.1.

3.3.2 In the Case of h ¼ �
As mentioned in Section 3.2.2, all of the slave servers in
BCNð�; �; �Þ are utilized for expansion in the second
dimension. Each slave server in BCNð�; �; �Þ is identified
by a unique label x ¼ x� � � �x1x0, where 1 � xi � � for 1 �
i � � and �þ 1 � x0 � n. Besides the unique label, each
slave server can be equivalently identified by a unique idðxÞ
that denotes its order among all of the slave servers in
BCNð�; �; �Þ and ranges from 1 to s� . For each slave server,
the mapping between a unique id and its label is bijection,
as defined in Theorem 2. Meanwhile, the label can be
derived from its unique id in the reverse way.

Theorem 2. For any slave server x ¼ x� � � �x1x0, its unique id is
given by

idðx� � � �x1x0Þ ¼
X�
i¼1

ðxi � 1Þ��i�1�� þ ðx0 � �Þ: ð2Þ

Proof. xi denotes the order of BCNð�; �; i� 1; �Þ that
contains the slave server x in a higher level BCNð�;
�; i; �Þ for 1 � i � �. In addition, the total number of
slave servers in any BCNð�; �; i� 1; �Þ is �i�1��. Thus,
there exist

P�
i¼1ðxi � 1Þ��i�1�� slave servers in other

smallest modules before the smallest module
BCNð�; �; 0Þ that contains the server x. On the other
hand, there are other x0 � � slave servers that reside in
the same smallest module with the server x but has a
lower x0 than the server x. Thus, proved. tu

As mentioned in Section 3.2.2, the resultant BCN net-
work when h ¼ � is a GðBCNð�; �; �ÞÞ consisting of s� þ 1
copies of a unit cluster BCNð�; �; �Þ. In such a case,
BCNuð�; �; �Þ denotes the uth unit cluster in the second
dimension. In BCNuð�; �; �Þ, each server is assigned a
unique label x ¼ x� � � �x1x0 and a 3-tuple ½vðxÞ ¼ 1; u; x�,
where vðxÞ is defined in Theorem 3. In BCNuð�; �; �Þ, all of
the master servers are interconnected according to the rules
in Definition 2 for 1 � u � s� þ 1.

Many different ways can be used to interconnect all of
the slave servers in s� þ 1 homogeneous BCNð�; �; �Þs to
constitute a GðBCNð�; �; �ÞÞ. For any two slave servers
½1; us; xs� and ½1; ud; xd�, as mentioned in literature [18] they
are interconnected only if

ud ¼ ðus þ idðxsÞÞ mod ðs� þ 2Þ
idðxdÞ ¼ s� þ 1� idðxsÞ;

ð3Þ

where idðxsÞ and idðxdÞ are calculated by (2). In literature
[4], the two slave servers are connected only if

us > idðxsÞ
ud ¼ idðxsÞ

idðxdÞ ¼ ðus � 1Þ mod s�:

ð4Þ

This paper does not focus on designing new interconnec-
tion methods for all of the slave servers because the above

1308 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013

Fig. 6. An illustrative example of BCNð4; 4; 1; 0Þ.

two and other permutation methods are suitable to con-
stitute GðBCNð�; �; �ÞÞ. For more information about the two
methods, we suggest readers to refer literatures [4], [18].

3.3.3 In the Case of h > �

After achieving BCNð�; �; �; �Þ, the resultant network can be
incrementally expanded in the first dimension without
destroying the existing structure. As discussed in Sec-
tion 3.2.3, BCNð�; �; h; �Þ (h > �) consists of s� þ 1 copies of
a unit cluster BCNð�; �; hÞ in the second dimension. Each
server in BCNuð�; �; hÞ, theuth unit cluster of BCNð�; �; h; �Þ,
is assigned a unique label x ¼ xh � � �x1x0 for 1 � u � s� þ 1.
In addition, BCNuð�; �; hÞ has �h��BCNð�; �; �Þs in the first
dimension. Recall that a sequential number v is employed to
rank those BCNð�; �; �Þs in BCNuð�; �; hÞ.

In BCNuð�; �; hÞ, each server x ¼ xh � � � x1x0 is assigned a
3-tuple ½vðxÞ; u; x�, where vðxÞ is defined in Theorem 3. A
pair of u and vðxÞ is sufficient to identify the unit cluster
BCNð�; �; �Þ that contains the server x in BCNð�; �; h; �Þ. For
a slave server x, we further assign a unique idðx� � � � x1x0Þ to
indicate the order of x among all of the slave servers in the
same BCNð�; �; �Þ.
Theorem 3. For any server labeled x ¼ xh � � �x1x0 for h � �, the

rank of the module BCNð�; �; �Þ in BCNð�; �; hÞ the server x
resides in is given by

vðxÞ ¼

1; if h ¼ �
x�þ1; if h ¼ � þ 1Xh
i¼�þ2

ðxi � 1Þ��i���1 þ x�þ1; if h > � þ 1:

8>>><
>>>:

ð5Þ

Proof. Recall that any BCNð�; �; iÞ is constructed with �

copies of BCNð�; �; i� 1Þ for 1 � i. Therefore, the total
number of BCNð�; �; �Þs in BCNð�; �; iÞ for i > � is �i�� .
In addition, xi indicates BCNð�; �; i� 1Þ in the next higher
level BCNð�; �; iÞ that contains such a server for 1 � i.
Thus, there are ðxi � 1Þ��i���1BCNð�; �; �Þs in other xi �
1 previous BCNð�; �; i� 1Þs inside BCNð�; �; iÞ for
� þ 2 � i � h. In addition, x�þ1 indicates the sequence of
BCNð�; �; �Þ in BCNð�; �; � þ 1Þ the server x resides in.
Therefore, the rank of BCNð�; �; �Þ in BCNð�; �; hÞ such a
server resides in is given by (5). Thus, proved. tu

After assigning a 3-tuple to all of the master and slave
servers, we propose a general procedure to constitute
BCNð�; �; h; �Þ (h > �), as shown in Algorithm 1. The entire
procedure includes three parts. The first part groups all of
the servers into the smallest modules BCNð�; �; 0Þ for
further expansion. The second part constructs s� þ 1

homogeneous BCNð�; �; hÞs by connecting the second
ports of those master servers that have the same u and
satisfy the constraints mentioned in Definition 2. Further-
more, the third part connects the second ports of those
slave servers that have the same v and satisfy the
constraints defined by (3). Consequently, the construction
produce results in BCNð�; �; h; �Þ consisting of �h��

homogeneous GðBCNð�; �; �ÞÞs. Note that it is not neces-
sary that the connection rule of all of the slave servers must
be that given by (3). It also can be that defined by (4).

Algorithm 1. Construction of BCNð�; �; h; �Þ
Require: h > �

1: Connects all of the servers that have the same u and the

common length-h prefix of their labels to the same

min-switch using their first ports. {Construction of all

smallest modules BCNð�; �; 0Þ}
2: for u ¼ 1 to ���� þ 1 do {Interconnect master servers

that hold the same u to form ���� þ 1 copies of

BCNð�; �; hÞ}
3: Any master server ½vðxÞ; u; x ¼ xh � � �x1x0� is

interconnected with a master server

½vðx0Þ; u; x0 ¼ xh � � �xjþ1xj�1x
j
j� using their second

ports if xj 6¼xj�1, xj�1 ¼ � � � ¼ x1 ¼ x0 for some

1 � j � h, where 1 � x0 � � and ajj represents j

consecutive ajs.

4: for v ¼ 1 to �h�� do {Connect slave servers that hold the

same v to form the vthGðBCNð�; �; �ÞÞ in
BCNð�; �; h; �Þ}

5: Interconnect any two slave servers ½vðxÞ; ux,

x ¼ xh � � �x1x0� and ½vðyÞ; uy; y ¼ yh � � � y1y0�
using their second ports only if (1) vðxÞ ¼ vðyÞ;
(2) ½ux; x� � � �x1x0� and ½uy; y� � � � y1y0� satisfy the

constraints in Formula 3.

4 ROUTING FOR ONE-TO-ONE TRAFFIC

The one-to-one traffic is the basic traffic model and the good
one-to-one support also results in the good several-to-one
and all-to-one support [7]. In this section, we start with the
single-path routing for the one-to-one traffic in BCN
without failures of switches, servers, and links. We then
study the parallel multipaths for the one-to-one traffic in
BCN. Finally, we propose fault-tolerant routing schemes to
address those representative failures by employing the
benefits of multipaths between any two servers.

4.1 Single Path for the One-to-One Traffic without
Failures

4.1.1 In the Case of h < �

For any BCNð�; �; hÞ (1 � h) in the first dimension, we
propose an efficient routing scheme, denoted as FdimRout-
ing, to find a single path between any pair of servers in a
distributed manner. Let src and dst denote the source and
destination servers in the same BCNð�; �; hÞ but different
BCNð�; �; h� 1Þs. The source and destination can be of the
master server or the slave server. The routing scheme first
determines the link ðdst1; src1Þ that interconnects the two
BCNð�; �; h� 1Þs that src and dst are located at. It then
derives two subpaths from src to dst1 and from src1 to dst.
The path from src to dst is the combination of the two
subpaths and the link ðdst1; src1Þ. Each of the two subpaths
can be obtained by recursively invoking Algorithm 2.

In Algorithm 2, the labels of a pair of servers are
retrieved from the two inputs that can be of 1-tuple or
3-tuple. A 3-tuple indicates that such a BCNð�; �; hÞ is a
component of the entire BCNð�; �; h; �Þ when h � �. The
CommPrefix calculates the common prefix of src and dst

and the GetIntraLink identifies the link that connects the
two sub-BCNs in BCNð�; �; hÞ. Note that the two ends of

GUO ET AL.: EXPANDABLE AND COST-EFFECTIVE NETWORK STRUCTURES FOR DATA CENTERS USING DUAL-PORT SERVERS 1309

the link can be directly derived from the indices of the two
sub-BCNs according to Definition 2. Thus, the time
complexity of GetIntraLink is Oð1Þ.

Algorithm 2. FdimRouting(src; dst)

Require: src and dst are two servers in BCNð�; �; hÞ (h < �).
The labels of the two servers are retrieved from the

inputs, and are src ¼ shsh�1 � � � s1s0 and

dst ¼ dhdh�1 � � � d1d0, respectively.

1: pref CommPrefixðsrc; dstÞ
2: Let m denote the length of pref

3: if m¼¼h then

4: Return ðsrc; dstÞ {The servers connect to the same

switch.}
5: ðdst1; src1Þ GetIntraLinkðpref; sh�m; dh�mÞ
6: head FdimRoutingðsrc; dst1Þ
7: tail FdimRoutingðsrc1; dstÞ
8: Return headþ ðdst1; src1Þ þ tail

GetIntraLinkðpref; s; dÞ
1: Let m denote the length of pref

2: dst1 pref þ sþ dh�m{dh�m represents h�m
consecutive d}

3: src1 pref þ dþ sh�m {sh�m represents h�m
consecutive s}

4: Return (dst1; src1)

From the FdimRouting, we obtain the following theo-
rem. Note that the length of the path between two servers
connecting to the same switch is one. Such an assumption
was widely used in the designs of server-centric network
structures for data centers, such as DCell, FiConn, BCube,
and MDCube.

Theorem 4. The shortest path length among all of the server pairs
in BCNð�; �; hÞ is at most 2hþ1 � 1 for h � 0.

Proof. For any two servers, src and dst, in BCNð�; �; hÞ but
in different BCNð�; �; h� 1Þs, let Dh denote the length
of the single path resulted from Algorithm 2. The entire
path consists of two subpaths in two different
BCNð�; �; h� 1Þs and one link connects the two lower
BCNs. It is reasonable to infer that Dh ¼ 2�Dh�1 þ 1 for
h > 0 and D0 ¼ 1. We can derive that Dh ¼

Ph
i¼0 2i.

Thus, proved. tu

The time complexity of Algorithm 2 is Oð2hÞ for deriving
the entire path and can be reduced to OðhÞ for deriving only
the next hop since we usually need to calculate one sub-
path that contains that next hop..

4.1.2 In the Case of h � �
Consider the routing scheme in any BCNð�; �; h; �Þ consist-
ing of ���� þ 1 copies of BCNð�; �; hÞ for h � �. The
FdimRouting scheme can discover a path only if the two
servers are located at the same BCNð�; �; �Þ. In other cases,
Algorithm 2 alone cannot guarantee to find a path between
any pair of servers. To handle such an issue, we propose the
BdimRouting scheme for the cases that h � �.

For any two servers, src and dst, in BCNð�; �; h; �Þ
(h � �), Algorithm 3 invokes Algorithm 2 to discover the
path between the two servers only if they are in the same
BCNð�; �; hÞ. Otherwise, it first identifies the link

(dst1; src1) that interconnects the vðsrcÞth BCNð�; �; �Þs of
BCNusð�; �; hÞ and BCNudð�; �; hÞ. Note that the link that
connects the vðdstÞth instead of the vðsrcÞth BCNð�; �; �Þs of
BCNusð�; �; hÞ and BCNudð�; �; hÞ is an alternative link.
Algorithm 3 then derives a subpath from src to dst1 that are
in the vðsrcÞth BCNð�; �; �Þ inside BCNusð�; �; hÞ and finds
another subpath from src1 to dst that are in BCNudð�; �; hÞ
by invoking Algorithm 2. Consequently, the path from src
to dst is the combination of the two subpaths and the link
ðdst1; src1Þ.

From theBdimRouting, we obtain the following theorem.

Theorem 5. The shortest path length among all of the server pairs
in BCNð�; �; h; �Þ (h > �) is at most 2hþ1 þ 2�þ1 � 1.

Proof. In Algorithm 3, the entire routing path from src to dst
might contain an interlink between dst1 and src1, a first
subpath from src to dst1 and a second subpath from src1
to dst. The length of the first subpath is 2�þ1 � 1 because
the two end servers are in the same BCNð�; �; �Þ.
Theorem 4 shows that the maximum path length of the
second subpath is 2hþ1 � 1. Consequently, the length of
the entire path from src to dst is at most 2hþ1 þ 2�þ1 � 1.
Thus, proved. tu

It is worth noticing that the GetInterLink can directly
derive the end servers of the link only based on the three
inputs and the constraints in (3). Thus, the time complexity
of the GetInterLink is Oð1Þ. The time complexity of
Algorithm 3 is Oð2kÞ for deriving the entire path, and can
be reduced to OðkÞ for deriving only the next hop.

Algorithm 3. BdimRouting(src; dst)

Require: src and dst are denoted as

½vðsh � � � s1s0Þ; us; sh � � � s1s0� and

½vðdh � � � d1d0Þ; ud; dh � � � d1d0� in BCNð�; �; h � �; �Þ.
1: if us¼¼ud then {In the same BCNð�; �; hÞ}
2: Return FdimRoutingðsrc; dstÞ
3: vc vðsh � � � s1s0Þ {vc can also be vðdh � � � d1d0Þ}
4: ðdst1; src1Þ GetInterLinkðus; ud; vcÞ
5: head FdimRoutingðsrc; dst1Þ {Find a path from src to

dst1 in the uths BCNð�; �; hÞ of BCNð�; �; h; �Þ}
6: tail FdimRoutingðsrc1; dstÞ{Find a path from src1 to

dst in the uthd BCNð�; �; hÞ of BCNð�; �; h; �Þ}
7: Return headþ ðdst1; src1Þ þ tail

GetInterLinkðs; d; vÞ
1: Infer two slave servers ½s; x ¼ xh � � �x1x0� and

½d; y ¼ yh � � � y1y0� from the sth and dthBCNð�; �; hÞ in

BCNð�; �; h; �Þ such that (1) vðxÞ ¼ vðyÞ ¼ v; (2)

½s; x� � � �x1x0� and ½d; y� � � �x1x0� satisfy the constraints

defined by Formula 3.

2: Return (½s; x�; ½d; y�)

4.2 Multipaths for One-to-One Traffic

Two parallel paths between a source server src and a
destination server dst exist, if the intermediate servers on
one path do not appear on the other. We will show how can
we generate parallel paths between any pair of servers.

Lemma 1. There are �� 1 parallel paths between any two
servers, src and dst, in BCNð�; �; hÞ but not in the same
BCNð�; �; 0Þ.

1310 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013

We show the correctness of Lemma 1 by constructing
such �� 1 paths. The construction procedure is based on
the single-path routing, FdimRouting, in the case of h < �.
We assume that BCNð�; �; iÞ is the lowest level BCN that
contains the two servers src and dst. The FdimRouting
determines the link ðdst1; src1Þ that interconnects the two
BCNð�; �; i� 1Þs each contains one of the two servers, and
then builds the first path passing that link. There are � one
lower level BCNð�; �; i� 1Þ in BCNð�; �; iÞ that contains the
dst. The first path does not pass other intermediate
BCNð�; �; iÞs, while each of other �� 2 parallel paths must
traverse one intermediate BCNð�; �; i� 1Þ.

Let xh � � �x1x0 and yh � � � y1y0 denote the labels of src1
and dst1, respectively. Now we construct the other �� 2
parallel paths from src to dst. First, a server labeled z ¼
zh � � � z1z0 is identified as a candidate server of src1 only if
zi�1 is different from xi�1 and yi�1 while other parts of its
label is the same as that of the label of src1. It is clear that
there exist �� 2 candidate servers of src1. Second, we find
a parallel path from src to dst by building a subpath from
the source src to an intermediate server z and a subpath
from z to the destination dst. The two subpaths can be
produced by the FdimRouting. So far, all of the �� 1
parallel paths between any two servers are constructed.
Note that each path is built in a fully distributed manner
only based on the labels of the source and destination
without any overhead of control messages.

We use Fig. 4 as an example to show the three parallel
paths between any two servers. The first path from 111 to
144 is 111!114!141!144, which is built by Algorithm 2.
Other two paths are 111!113!131!134!143!144 and
111!112!121!124!142!144. We can see that the three
paths are node disjointed and, thus, are parallel.

As for BCNð�; �; �; �Þwith��� þ 1 copies of BCNð�; �; �Þ,
if src and dst reside in the same BCNð�; �; �Þ, there are �� 1
parallel paths between src and dst according to Lemma 1.
Otherwise, we assume A and B denote two BCNð�; �; �Þs in
which src and dst reside, respectively. In such a case, there
exist ��� parallel paths between A and B because
BCNð�; �; �; �Þ connects ��� þ 1 copies of BCNð�; �; �Þ by
means of a complete graph. In addition, Lemma 1 shows that
there are only �� 1 parallel paths between any two servers
in BCNð�; �; �Þ, such as A and B. Accordingly, it is easy to
infer that Lemma 2 holds.

Lemma 2. There are �� 1 parallel paths between any two servers
in BCNð�; �; �; �Þ but not in the same BCNð�; �; 0Þ.

In the case that h > �, BCNð�; �; �Þ is the unit cluster
of BCNð�; �; h; �Þ. Assume src and dst are labeled as
½vðsh � � � s1s0Þ; us; sh � � � s1s0� and ½vðdh � � � d1d0Þ; ud; dh � � � d1d0�,
and reside in two unit clusters with labels<vðsh � � � s1s0Þ; us>
and <vðdh � � � d1d0Þ; ud>, respectively. According to Lem-
mas 1 and 2, there are �� 1 parallel paths between src and
dst if us ¼ ud or vðsh � � � s1s0Þ ¼ vðdh � � � d1d0Þ. In other cases,
we select BCNð�; �; �Þ with label <vðsh � � � s1s0Þ; ud> as a
relay cluster. As aforementioned, there are��� parallel paths
between the unit clusters <vðsh � � � s1s0Þ; us> and <vðsh� � �
s1s0Þ; ud>, while only �� 1 parallel paths between
<vðsh � � � s1s0Þ; ud> and <vðdh � � � d1d0Þ; ud>. In addition,
Lemma 1 shows that there are only �� 1 parallel paths

between any two servers in the same unit cluster. Accord-
ingly, �� 1 parallel paths exist between src and dst.
Actually, the number of parallel paths between src and dst
is also�� 1 for another relay cluster<vðdh � � � d1d0Þ; us>. The
two groups of parallel paths only intersect inside the unit
clusters<vðsh � � � s1s0Þ; us> and<vðdh � � � d1d0Þ; ud>. So far, it
is easy to derive Theorem 6.

Theorem 6. No matter whether h � �, there are �� 1 parallel
paths between any two servers in BCNð�; �; h; �Þ but not in
the same BCNð�; �; 0Þ.

Although BCN has the capability of providing multi-
paths for the one-to-one traffic, the existing routing
schemes, including the FdimRouting and the BdimRouting,
only exploit one path. To enhance the transmission
reliability for the one-to-one traffic, we adapt the routing
path when the transmission meets failures of a link, a
server, and a switch. It is worth noticing that those parallel
paths between any pair of servers pass through the
common switch that connects the destination server in the
last step. This does not hurt the fault-tolerant ability of those
parallel paths except the switch connecting the destination
fails. In such a rare case, at most one reachable path exists
between two servers.

4.3 Fault-Tolerant Routing in BCN

We first give the definition of a failed link that can
summarize three representative failures in data centers.

Definition 3. A link ðsrc1; dst1Þ is called failed only if the head
src1 does not fail, however, cannot communicate with the tail
dst1 no matter whether they are connected to the same switch
or not. The failures of dst1, link, and the switch that connects
src1 and dst1 can result in a failed link.

We then improve the FdimRouting and the BdimRouting
using two fault-tolerant routing techniques, i.e., the local
reroute and remote reroute. The local rerouteadjusts a routing
path that consists of local links on the basis of the
FdimRouting. On the contrary, the remote reroute modifies
those remote links in a path derived by BdimRouting. All of
the links that interconnect master servers using the second
ports are called the local links, while those links that
interconnect slave servers using the second ports are called
the remote links.

4.3.1 Local Reroute

Given any two servers src and dst in BCNð�; �; h; �Þ (h < �),
we can calculate a path from src to dst using the
FdimRouting. Consider any failed link ðsrc1; dst1Þ in such
a path, where src1 and dst1 are labeled xh � � �x1x0 and
yh � � � y1y0, respectively. The FdimRouting does not take
failed links into account. We introduce the local reroute to
bypass failed links by making local decisions. Here, each
server has only local information. That is, it knows only the
health state of the other servers on its directly connected
switch (the master and slave servers) and the server
connected over its second NIC (if any). Each server
computes a set of relay servers for a failed next-hop server
on demand. The assumption is that if the direct next hop is
not reachable at least one of the relay servers can be
reachable from the current server.

GUO ET AL.: EXPANDABLE AND COST-EFFECTIVE NETWORK STRUCTURES FOR DATA CENTERS USING DUAL-PORT SERVERS 1311

The basic idea of the local reroute is that src1 immediately
identifies all of the usable candidate servers of dst1 and then
selects one of such servers as a relay server. The server src1
first routes packets to relay along a path derived by the
FdimRouting and then to the final destination dst0 along a
path from relay to dst0. If any link in the first subpath from
src1 to relay fails, the packets are routed toward dst0 along a
new relay of the tail of the failed link, and then all of the
existing relay servers in turn. On the other hand, the local
reroute handles any failed link in the second subpath from
relay to dst0 in the same way.

A precondition of the local reroute is that src1 can identify
a relay server for dst1 by only local decisions. Let m denote
the length of the longest common prefix of src1 and dst1.
Let xh � � �xh�mþ1 denote the longest common prefix of src1
and dst1 for m � 1. If m 6¼ h, the two servers dst1 and src1
are not connected with the same switch, and then the label
zh � � � z1z0 of the relay server can be given by

zh � � � zh�mþ1 ¼ yh � � � yh�mþ1

zh�m 2 ff1; 2; . . . ; �g � fxh�m; yh�mgg
zh�m�1 � � � z1z0 ¼ yh�m�1 � � � y1y0:

ð6Þ

Otherwise, we first derive the server dst2 that connects with
the server dst1 using their second ports. The failure of the
link ðsrc1; dst1Þ is equivalent to the failure of the link
ðdst1; dst2Þ unless dst1 is the destination. Thus, we can
derive a relay server of the server dst2 using (6), i.e., the
relay server of the server dst1. In summary, the total
number of such relay servers is �� 2, where ��ð2���nÞ =
ð2�� þ 1Þ as shown in Theorem 8. It is unlikely that all of
relay servers for a failed one-hop server will be unreachable
simultaneously because the switch ports, n, in a data center
are typical not small.

In (6), the notation h�m indicates that the two servers
src1 and dst1 are in the same BCNð�; �; h�mÞ but in two
different BCNð�; �; h�m� 1Þs. There exist �BCNð�; �; h�
m� 1Þ subnets inside such a BCNð�; �; h�mÞ. When src1
finds the failure of dst1, it chooses one relay server from all of
BCNð�; �; h�m� 1Þ subnets in such a BCNð�; �; h�mÞ
except the two subnets that contain src1 or dst1. If src1 selects
a relay server for dst1 from BCNð�; �; h�m� 1Þ that
contains src1, the packets will be routed back to dst1 that
fails to route those packets.

In Fig. 4, 111!114!141!144!411!414!441!444 is
the path from 111 to 444 derived by Algorithm 2. Once
the link 144!411 and/or the server 411 fails, the server
144 immediately finds server 211 or 311 as a relay server,
and calculates a path from it to the relay server. If the
relay server is 211, the path derived by Algorithm 2 is
144!142!124!122!122!211. After receiving packets
toward 444, the derived path by Algorithm 2 from 211
to 444 is 211!214!241!244!422!424!442!444. It is
worth noticing that if any link in the subpath from 144 to
221 fails, the head of that link must bypass such a failed
link and reaches 221 in the same way. If the link 122!211
fails, the server 311 will replace 211 as the relay server of
411. If there is a failed link in the subpath from 211 to 444,
the local reroute is used to address the failed link in the
same way.

It is worth noticing that the failed link ð141; 144Þ will
be found if the server 144 in the path from 111 to 444 fails. The

failure of a link ð141; 144Þ is equivalent to the failure of the
link ð144; 411Þ. Hence, the servers 211 and 311 are the relay
servers derived by the aforementioned rules and (6). All of
the servers each with an identifier starting with 1 from left to
right cannot be the relay server because the path from the
relay server to the destination will pass the failed link again.

If a server prefers to precompute and store the relay
servers, it has to keep a forwarding table for its one-hop
neighbors in the first dimension. Such forwarding table for
relaying purpose is of size �, with each entry is of size �� 2
because there exist �� 2 relay servers for a failed one-hop
server. Such a method incurs less delay than computing the
relay servers on demand, however, consumes additional
storage space of Oð�2Þ. Such an overhead can be reduced to
� if only a few relay servers are stored in each entry, e.g.,
three relay servers if such a number is enough for bypassing
a failed one-hop server.

4.3.2 Remote Reroute

For any two servers, src and dst, in BCNð�; �; h; �Þ (h � �),
their 3-tuples are ½vs; us; sh � � � s1s0� and ½vd; ud; dh � � � d1d0�,
respectively. The local reroute can handle any failed link in
the path from src to dst if they are in the same BCNð�; �; hÞ
in BCNð�; �; h; �Þ, i.e., us ¼ ud. Otherwise, a pair of servers
dst1 and src1 are derived according to the GetInterLink
operation in Algorithm 3, and are denoted as ½us; vs; x ¼
xh � � �x1x0� and ½ud; vs; y ¼ yh � � � y1y0�, respectively. In other
words, dst1 and src1 are in the vsth BCNð�; �; �Þs inside
BCNusð�; �; hÞ and BCNudð�; �; hÞ, respectively. The link
ðdst1; src1Þ is the only one that interconnects the two
vsth BCNð�; �; �Þs in the two BCNð�; �; hÞs.

If the packets from src to dst meets failed links in the two
subpaths from src to dst1 and from src1 to dst, the local reroute
can address those failed links. The local reroute, however,
cannot handle the failures of dst1, src1, and the links between
them. In such cases, the packets cannot be forwarded from
the usth BCNð�; �; hÞ to the udth BCNð�; �; hÞ inside such a
BCNð�; �; h; �Þ through the desired link ðdst1; src1Þ. We
propose the remote reroute to address such an issue.

The basic idea of remote reroute is to transfer the packets
to another slave server dst2 that is connected with the same
switch together with dst1 if at least one such slave server
and its associated links are usable. The label of dst2 is
xh � � �x1x

0
0, where x00 can be any integer ranging from �þ 1

to n except x0. Assume that the other end of the link that is
incident from dst2 using its second port is a slave server
src2 in another BCNuið�; �; hÞ inside the entire network. The
packets are then forwarded to the slave server src2, and are
routed to the destination dst along a path derived by
Algorithm 3. If a link in the path from src2 to dst fails, the
local reroute, remote reroute, and Algorithm 3 can handle the
failed links.

5 EVALUATION

In this section, we analyze several basic topological
properties of HCN and BCN, including the network order,
network diameter, server degree, connectivity, and path
diversity. Then, we conduct simulations to evaluate the
distribution of path length, average path length, and the
robustness of routing algorithms.

1312 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013

5.1 Large Network Order

Lemma 3. The total number of servers in BCNð�; �; hÞ is

�h�ð�þ �Þ, including �hþ1 master and �h�� slave servers.

Proof. As mentioned in Section 3, any given level BCN

consists of � one lower BCNs. There are �h level-0 BCNs

in BCNð�; �; hÞ, where a level-0 BCN consists of � master

servers and � slave servers. Thus, proved. tu
Lemma 4. The number of servers in GðBCNð�; �; hÞÞ is

�h�ð�þ �Þ�ð�h�� þ 1Þ, including �hþ1�ð�h�� þ 1Þ and �h���
ð�h�� þ 1Þ master and slave servers, respectively.

Proof. As mentioned in Section 3, there are �h�� þ 1 copies

of BCNð�; �; hÞ in GðBCNð�; �; hÞÞ. In addition, the

number of servers in BCNð�; �; hÞ has been proved by

Lemma 3. Thus, proved. tu
Theorem 7. The number of servers in BCNð�; �; h; �Þ is

�h�ð�þ �Þ; if h < �
�h���

�
���ð�þ �Þ�ð���� þ 1Þ

�
; if h � �:

�
ð7Þ

Proof. Lemma 3 has proved such an issue when h < r. In

addition, BCNð�; �; �; �Þ is just GðBCNð�; �; �ÞÞ. Thus,

there are ���ð�þ �Þ�ð���� þ 1Þ servers in BCNð�; �; �; �Þ.
In addition, BCNð�; �; h; �Þ contains �h��BCNð�; �; �; �Þs
when h � �. Thus, proved. tu

Theorem 8. For any n ¼ �þ �, the optimal � that maximizes

the total number of servers in BCNð�; �; �; �Þ is given by

� � ð2���nÞ=ð2�� þ 1Þ: ð8Þ

Proof. The total number of servers in BCNð�; �; �; �Þ is

denoted as

fð�Þ ¼ ���ð�þ �Þ�ð���� þ 1Þ
¼ n��� þ n2��2� � n � �2�þ1:

Thus, we have

’fð�Þ
’�

¼ n � ���1
�
� þ 2� � n��� � ð2� þ 1Þ��þ1

�
� n � ���1

�
2� � n � �� � ð2� þ 1Þ��þ1

�
:

Clearly, the derivative is 0 when � � ð2 � � � nÞ=ð2 � � þ 1Þ.
At the same time, the second derivative is less than 0.

Thus, � � ð2 � � � nÞ=ð2 � � þ 1Þ maximizes the total num-

ber of servers in BCNð�; �; �; �Þ. Thus, proved. tu

Fig. 7 plots the number of servers in BCNð�; �; 1; 1Þwhen
n ¼ 32 or 48. The network order goes up and then goes
down after it reaches the peak point as � increases in the
both cases. The largest network order of BCNð�; �; 1; 1Þ is
787,968 for n ¼ 48 and 155,904 for n ¼ 32, and can be
achieved only if � ¼ 32 and 21, respectively. Such experi-
mental results match well with Theorem 8.

Fig. 8a depicts the changing trend of the ratio of the
network order of BCNð�; �; 1; 1Þ to that of FiConn(n; 2) as
the number of ports in each miniswitch increases, where �
is set to the optimal value � � ð2���nÞ=ð2�� þ 1Þ. The results
show that the number of servers of BCN is significantly
larger than that of FiConn(n; 2) with the server degree 2 and
the network diameter 7, irrespective the value of n. As
shown in Table 2, the network size of HCN(n; 2) is less than
that of FiConn(n; 2) as expected.

Formula (7) indicates that the network order of BCN
grows double exponentially when h increases from � � 1 to
�, while grows exponentially with h in other cases. On the
contrary, the network order of FiConn always grows double
exponentially with its level. Consequently, it is not easy to
incrementally deploy FiConn because a level-k FiConn
requires a large number of level-ðk� 1Þ FiConns. In the case
of BCN, incremental deployment is relative easy because a
higher level BCN requires only � one lower level BCNs
except h ¼ �. On the other hand, the incomplete BCN can
relieve the restriction on the network order for realizing
incremental deployment by exploiting the topological
properties of BCN in both dimensions.

5.2 Low Diameter and Server Degree

According to Theorems 4 and 5, we obtain that the diameters
of BCNð�; �; hÞ and BCNð�; �; h; �Þ (h < �) are 2hþ1 � 1 and
2�þ1 þ 2hþ1 � 1, respectively. In practice, h and � are two
small integers. Therefore, BCN is a low-diameter network.

GUO ET AL.: EXPANDABLE AND COST-EFFECTIVE NETWORK STRUCTURES FOR DATA CENTERS USING DUAL-PORT SERVERS 1313

Fig. 7. The network order of BCNð�; �; 1; 1Þ versus � ranging from 0 to n.
Fig. 8. The ratio of network order and bisection width of BCNð�; �; 1; 1Þ
to that of FiConn(n; 2), where their network diameters are the same 7.

TABLE 2
Network Orders, Bisection Widths, and Path Diversity

of BCNð�; �; 1; 1Þ, FiConn(n,2), and HCNðn; 2Þ

After measuring the network order and diameter of
BCN, we study the node degree distribution in BCNð�; �;
h; �Þ. If h < �, the node degrees of master servers are 2
except the � available master servers for further expansion.
The � master servers and all of the slave servers are of
degree 1. Otherwise, there are ��ð���� þ 1Þ available master
servers that are of degree 1. Other master servers and all of
the slave servers are of degree 2.

BCN of level one in each dimension offers more than
1,000,000 servers if 56-port switches are used, while the
server degree and network diameter are only 2 and 7,
respectively. This demonstrates the low network diameter
and server degree of BCN.

5.3 Connectivity and Path Diversity

The edge connectivity of a single server is one or two in
BCNð�; �; h; �Þ. Consider the fact that BCNð�; �; h; �Þ is
constituted by a given number of low level subnets in the
first dimension. We further evaluate the connectivity of
BCN at the level of different subnets in Theorem 9.

Theorem 9. In any BCNð�; �; h; �Þ, the smallest number of
remote links or servers that can be deleted to disconnect one
BCNð�; �; iÞ from the entire network is

�� 1; if h < �
�� 1þ �i��; if h � �:

�
ð9Þ

Proof. If h < �, consider any subnet BCNð�; �; iÞ for 0 � i <
h in BCNð�; �; h; �Þ. If it contains one available master
server for further expansion, only �� 1 remote links are
used to interconnect with other homogeneous subnets. It
is clear that the current subnet is disconnected if the
corresponding �� 1 remote links or servers are removed.

If h � �, besides the �� 1 remote links that connect its
master servers the subnet BCNð�; �; iÞ has �i�� addi-
tional remote links that connect its slave servers. Thus, it
can be disconnected only if the corresponding �� 1þ
�i�� remote links or servers are removed. Thus, proved.tu

Theorem 10 (Bisection width). The minimum number of
remote links that need to be removed to split BCNð�; �; h; �Þ
into two parts of about the same size is given by

�2=4; if h < � and � is an even integer
ð�2 � 1Þ=4; if h < � and � is an odd integer

�h��� ð�
� �� þ 2Þ��� ��

4
; if h � �:

8><
>: ð10Þ

Proof. It is worth noticing that the bisection width of a
compound graph GðG1Þ is the maximal one between the
bisection widths of G and G1 [15]. For 1 � h < �,
BCNð�; �; h; �Þ is a compound graph, where G is a
complete graph with � nodes and G1 is BCNð�; �;
h� 1; �Þ. We can see that the bisection width of G is
�2=4 if � is an even number and ð�2 � 1Þ=4 if � is an odd
number. The bisection width of BCNð�; �; h� 1; �Þ can be
induced in this way and is the same as that ofG. Thus, the
bisection width of BCNð�; �; h; �Þ for 1 � h < � is proved.

BCNð�; �; h; �Þ for h � � is a compound graph, where
G is a complete graph with ���� þ 1 nodes and G1 is
BCNð�; �; hÞ. We can see that the bisection width of G is
ð���� þ 2Þ�����=4 and that of G1 is �2=4 if � is an even
number and ð�2 � 1Þ=4 if � is an odd number, which is

less than that of G. Moreover, G1 has �h�� copies of
BCNð�; �; �Þ, and there is one link between the
ith BCNð�; �; �; Þs in two copies of G1 for 1 � i � �h�� .
Thus, there are �h�� links between any two copies of G1;
hence, the bisection width of BCNð�; �; h; �Þ is
�h�� �ð���� þ 2Þ�����=4. Thus, proved. tu

For any FiConnðn; kÞ, the bisection width is at least
Nk=ð4�2kÞ, where Nk ¼ 2kþ2 � ðn=4Þ2k denotes the number of
servers in the network [5]. We then evaluate the bisection
width of FiConn(n; 2) and BCNð�; �; 1; 1Þ under the same
server degree, switch degree, and network diameter. In such
a setting, the network size of BCNð�; �; 1; 1Þ outperforms
that of FiConnðn; 2Þ. Fig. 8b shows that BCNð�; �; 1; 1Þ
significantly outperforms FiConnðn; 2Þ in terms of the
bisection width. We can see from Table 2 that the bisection
width of HCNðn; 2Þ is less than that of FiConnðn; 2Þ as
expected. Larger bisection width implies higher network
capacity and more resilient against failures.

As proved in Lemma 2, there are �� 1 node-disjoint
paths between any two servers in BCNð�; �; �; �Þ, where the
optimal� is 2���n=ð2�� þ 1Þ. Thus, the path diversity between
any two servers is about d2n=3e � 1. With such disjoint
paths, the transmission rate can be accelerated and the
transmission reliability can be enhanced. We see from Table 2
that BCNð�; �; 1; 1Þ has a high path diversity for an one-to-
one traffic and HCNðn; 2Þ outperforms BCNð�; �; 1; 1Þ.

5.4 Evaluation of the Path Length

We run simulations on BCNð�; �; 1; 1Þ and FiConn(n; 2) in
which n2f8; 10; 12; 14; 16g and � is set to its optimal value.
The ratio of network order of BCN to that of FiConn varies
between 1.4545 and 1.849. For the all to all traffic, Fig. 9a
shows the average length of the shortest path of FiConn, the
shortest path of BCN, and the routing path of BCN. For any
BCN, the routing path length is a little bit larger than the
shortest path length because the current routing protocols
do not entirely realize the shortest path routing. The
FdimRouting can be further improved by exploiting those
potential shortest paths due to links in the second
dimension. Although the network order of BCN is a lot
larger than that of FiConn, the average shortest path length
is a little bit larger than that of FiConn.

Then, we evaluate the fault-tolerant ability of the
topology and the routing algorithm of BCNð6; 10; 1; 1Þ and
a FiConnð16; 2Þ. The network sizes of BCNð6; 10; 1; 1Þ and
FiConnð16; 2Þ are 5,856 and 5,327, respectively. As shown in

1314 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013

Fig. 9. The path length of BCN and that of FiConn under different
configurations.

Fig. 9b, the average routing path length of BCN and FiConn
increase with the server failure ratio. The average routing
path length of BCN is a lot shorter than that of FiConn
under the same server failure ratio although FiConn
outperforms BCN in terms of the average shortest path
length when the server failure ratio is zero. Such results
demonstrate that the topology and routing algorithms of
BCN possess better fault-tolerant ability. Note that the
network size of HCN is less than that of BCN and FiConn
under the same configurations of n and h. Thus, it is clear
that the network diameter and average path length are
larger than that of BCN and FiConn under the same settings
of N and n.

We run simulations on BCNð�; �; 1; 1Þ and FiConn(n; 2),
where n ¼ 16 and � ¼ 6. The network sizes of
BCNð6; 10; 1; 1Þ and FiConnð16; 2Þ are 5,856 and 5,327,
respectively. Thus, the two network structures have the
same server degree 2, the same network diameter 7, and
the similar network order. Fig. 10a indicates that the
routing algorithm of BCN may not discover a few part of
shortest paths and replace them with relative long routing
paths. Fig. 10b plots the distribution of shortest path for
BCN and FiConn. We can see that about 60 percent of the
shortest paths in FiConn are of length 7 while only about
40 percent of the shortest paths in BCN are of length 7. On
the other hand, the simulation results also match the
theoretical values of the network diameters of BCN and
FiConn.

5.5 Throughput Comparison

We further compare HCN and BCN with three network
structures for data centers, including Fat Tree, DCell, and
BCube, in terms of the aggregate capacity, as shown in
Table 3. To ensure a fair comparison, we assume that such
network structures interconnect the same number of servers
with the same type of switches. HCN, BCN, DCell, and
BCube are all recursively defined structures, and we denote
the levels of them as k1, k2, k3, and k4, respectively.
Typically, there is k1 � k2 � k3 and k4 � k3. Note that N
denotes the number of servers in a data center.

The maximum throughput of the one-to-one commu-
nication is the number of NIC ports per server. HCN and
BCN are twice that of Fat-Tree, but less than that of DCell
and BCube whose number of levels is typically larger than
2. In the case of the all-to-all communication, Fat-Tree and
BCube perform best because they achieve the nonblock
communication between any pair of servers, but HCN and

BCN are a little worse than DCell. Such a result is not
surprising because HCN and BCN utilize much less
switches, links, and ports than the other three structures.
We argue that the benefits of HCN and BCN outweigh such
a downside because it is unlikely that all servers frequently
participate in the all-to-all communication.

6 DISCUSSION

6.1 Extension to More Server Ports

Although we assume that all of the servers are equipped
with two built-in NIC ports, the design methodologies of
HCN and BCN can be easily extended to involve any
constant number, denoted as m, of server ports. In fact,
servers with four embedded NIC ports have been available.
Given any server with m ports, it can contribute m� 1 ports
for future higher level interconnection after reserving one
port for connecting with a miniswitch. Consider that a set of
m� 1 servers each of which holds two ports and connects
with the same miniswitch using its first port. It is clear that
the set of m� 1 servers can totally contribute m� 1 ports
for future higher level interconnections. Intuitively, a server
with m ports can be treated as a set of m� 1 dual-port
servers. In this way, we can extend HCN and BCN to
embrace any constant number of server ports. In fact, there
can be many other specific ways for interconnecting servers
with a constant node degree of more than 2, and we leave
such an investigation as our future work.

6.2 Locality-Aware Task Placement

As discussed in Section 5.5, HCN and BCN cannot achieve
the same aggregate capacity as Fat-tree, DCell, and BCube.
Fortunately, such an issue can be addressed by some
techniques at the application layer, due to the observations
as follows:

As prior work [6] has shown, a server is likely to
communicate with a small subset of other servers when
conducting typical applications in common data centers,
such as the group communication, and VM migration.
Additionally, data centers with hierarchical network struc-
tures, for example, HCN and FiConn, hold an inherent
benefit. That is, lower level networks support local
communications, while higher level networks are designed
to realize remote communications.

As shown in Table 3, the aggregate bottleneck through-
put of HCN and BCN are N=2k1 and N=2k2 , respectively.
We assume that the bandwidth of each link in a data center
is one. Thus, the throughput one flow receives at the
bottleneck link is 1=ðN 	 2k1Þ and 1=ðN 	 2k2Þ, respectively.
Accordingly, the throughput a flow receives in the all-to-all
group communications decreases along with the increase of
the group size. A boundary on the group size can, thus, be
derived given a constraint on the flow throughput between
any pair of servers.

GUO ET AL.: EXPANDABLE AND COST-EFFECTIVE NETWORK STRUCTURES FOR DATA CENTERS USING DUAL-PORT SERVERS 1315

Fig. 10. The path length distribution under all to all traffic.

TABLE 3
Comparison of HCN, BCN, DCell, Fat-Tree, and BCube

Furthermore, a locality-aware approach can be used for
placing those tasks onto servers in HCN. That is, those tasks
with intensive data exchange can be placed onto servers, in
HCNðn; 0Þ, which connect to the same switch. If those tasks
need some more servers, they may reserve a one higher
lever structure HCNðn; 1Þ, and so on. There is only a few
even one server hop between those servers. As proved in
Section 5.1, HCN is usually sufficient to contain hundreds
even thousands of servers, where the number of server hops
is at most three. Similarly, we can use the locality-aware
mechanism when placing tasks onto data center servers in
BCN. Therefore, the locality-aware mechanism can largely
save the network bandwidth by avoiding unnecessary
remote data communications.

6.3 Impact of Server Routing

In both HCN and BCN, because servers that connect to other
modules at a different level have to forward packets, they
will need to devote some processing resources for this
aspect. Although we can use software-based packet for-
warding schemes for our HCN and BCN, they usually incur
nontrivial CPU overhead. The hardware-based packet
forwarding engine like CAFE [19] and ServerSwitch [20]
are good candidates for supporting DCN designs. Inspired
by the fact that CAFE and ServerSwitch can be easily
configured, we can reconfigure them to forward self-defined
packets for our HCN or BCN without any hardware
redesigning.

7 CONCLUSION

In this paper, we propose HCN and BCN, two novel server-
centric network structures that utilize hierarchical com-
pound graphs to interconnect large number of dual-port
servers and low-cost commodity switches. They own two
topological advantages, i.e., the expandability and the equal
server degree. Moreover, HCN offers a high degree of
regularity, scalability, and symmetry that conform to the
modular designs of data centers well. BCN of level one in
each dimension is the largest known DCN with the server
degree 2 and the network diameter 7. It is highly scalable to
support hundreds of thousands of servers with the low
diameter, low cost, high bisection width, high path
diversity for the one-to-one traffic, and good fault-tolerant
ability. Analysis and simulations show that our HCN and
BCN are viable structures for data centers.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their constructive comments. The work of Deke Guo is
supported in part by the National Science Foundation
(NSF) China under Grants No. 61170284 and No. 60903206.
The work of Dan Li is supported in part by the NSF China
under grant No. 61170291. The work of Yunhao Liu is
supported in part by the NSFC Major Program under
grant No. 61190110 and National High-Tech R&D Program
of China (863) under Grant No. 2011AA010100. The work
of Guihai Chen is supported in part by the NSF China
under No. 61133006 and the National Basic Research
Program of China (973 Program) under No. 2012CB316200.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File
System,” Proc. 19th ACM Symp. Operating Systems Principles
(SOSP), pp. 29-43, 2003.

[2] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R.E. Gruber, “Bigtable: A
Distributed Storage System for Structured Data,” ACM Trans.
Computer Systems, vol. 26, no. 2, article 4, 2008.

[3] M.A. Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” Proc. ACM SIGCOMM, 2008.

[4] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: A
Scalable and Fault-Tolerant Network Structure for Data Centers,”
Proc. ACM SIGCOMM, 2008.

[5] D. Li, C. Guo, H. Wu, Y. Zhang, and S. Lu, “Ficonn: Using Backup
Port for Server Interconnection in Data Centers,” Proc. IEEE
INFOCOM, 2009.

[6] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, S. Lu, and J. Wu, “Scalable
and Cost-Effective Interconnection of Data-Center Servers Using
Dual Server Ports,” IEEE/ACM Trans. Networking, vol. 19, no. 1,
pp. 102-114, Feb. 2011.

[7] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “Bcube: A High Performance, Server-Centric Network
Architecture for Modular Data Centers,” Proc. ACM SIGCOMM,
2009.

[8] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz,
and P. Patel, “VL2: A Scalable and Flexible Data Center Network,”
Proc. ACM SIGCOMM, 2009.

[9] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang, “Mdcube: A High
Performance Network Structure for Modular Data Center Inter-
connection,” Proc. ACM CONEXT, 2009.

[10] D. Li, M. Xu, H. Zhao, and X. Fu, “Building Mega Data Center
from Heterogeneous Containers,” Proc. IEEE 19th Int’l Conf.
Network Protocols (ICNP), pp. 256-265, 2011.

[11] M. Miller and J. Siran, “Moore Graphs and Beyond: A Survey of
the Degree/Diameter Problem,” Electronic J. Combinatorics, vol. 61,
pp. 1-63, Dec. 2005.

[12] N. Alon, S. Hoory, and N. Linial, “The Moore Bound for Irregular
Graphs,” Graphs and Combinatorics, vol. 18, no. 1, pp. 53-57, 2002.

[13] R.M. Damerell, “On Moore Graphs,” Proc. Cambridge Philosophical
Soc., vol. 74, pp. 227-236, 1973.

[14] M. Imase and M. Itoh, “A Design for Directed Graphs with
Minimum Diameter,” IEEE Trans. Computers, vol. C-32, no. 8,
pp. 782-784, Aug. 1983.

[15] D.P. Agrawal, C. Chen, and J.R. Burke, “Hybrid Graph-Based
Networks for Multiprocessing,” Telecomm. System, vol. 10, pp. 107-
134, 1998.

[16] L.N. Bhuyan and D.P. Agrawal, “Generalized Hypercube and
Hyperbus Structures for a Computer Network,” IEEE Trans.
Computers, vol. C-33, no. 4, pp. 323-333, Apr. 1984.

[17] K. Chen, C. Guo, H. Wu, J. Yuan, Z. Feng, Y. Chen, S. Lu, and W.
Wu, “DAC: Generic and Automatic Address Configuration for
Data Center Networks,” IEEE/ACM Trans. Networking, vol. 20,
no. 1, pp. 84-99, Feb. 2012.

[18] P.T. Breznay and M.A. Lopez, “A Class of Static and Dynamic
Hierarchical Interconnection Networks,” Proc. IEEE Int’l Conf.
Parallel Processing (ICPP), vol. 1, pp. 59-62, 1994.

[19] G. Lu, Y. Shi, C. Guo, and Y. Zhang, “Cafe: A Configurable Packet
Forwarding Engine for Data,” Proc. ACM SIGCOMM Workshop
Programmable Routers for Extensible Services of Tomorrow (PRESTO),
2009.

[20] G. Lu, C. Guo, Y. Li, and Z. Zhou, “Serverswitch: A Program-
mable and High Performance Platform for Data Center Net-
works,” Proc. Eighth USENIX Conf. Networked Systems Design and
Implementation (NSDI), pp. 15-28, 2011.

1316 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013

Deke Guo received the BS degree in industry
engineering from Beijing University of Aeronau-
tic and Astronautic, Beijing, China, in 2001, and
the PhD degree in management science and
engineering from National University of Defense
Technology, Changsha, China, in 2008. He is an
associate professor with the College of Informa-
tion System and Management, National Univer-
sity of Defense Technology, Changsha, China.
His research interests include distributed sys-

tems, wireless and mobile systems, P2P networks, and interconnection
networks. He is a member of the ACM and the IEEE.

Tao Chen received the BS degree in military
science, and the MS and PhD degrees in
military operational research from the National
University of Defense Technology, Changsha,
China, in 2004, 2006, and 2011, respectively.
He is an assistant professor with the College of
Information System and Management, National
University of Defense Technology, Changsha,
P.R. China. His research interests include
wireless sensor networks, peer-to-peer comput-

ing, and data center networking. He is a member of the IEEE.

Dan Li received the PhD degree in computer
science from Tsinghua University, Beijing, Chi-
na, in 2007. He is an assistant professor with the
Computer Science Department, Tsinghua Uni-
versity. Before joining the faculty of Tsinghua
University, he spent two years as an associate
researcher with the Wireless and Networking
Group, Microsoft Research Asia, Beijing, China.
His research interests include Internet architec-
ture and protocols, P2P networks, to cloud

computing networks. He is a member of the IEEE.

Mo Li received the BS degree in computer
science and technology from Tsinghua Univer-
sity, Beijing, China, in 2004, and the PhD degree
in computer science and engineering from Hong
Kong University of Science and Technology,
Hong Kong, in 2009. He is a Nanyang assistant
professor with the Computer Science Division,
School of Computer Engineering, Nanyang
Technological University, Singapore. His re-
search interests include distributed systems,

wireless sensor networks, pervasive computing and RFID, and wireless
and mobile systems. He is a member of the IEEE.

Yunhao Liu received the BS degree in automa-
tion from Tsinghua University, China, in 1995,
and the MS and PhD degrees in computer
science and engineering from Michigan State
University, in 2003 and 2004, respectively. He is
currently an EMC chair professor at Tsinghua
University, as well as a faculty member with the
Hong Kong University of Science and Technol-
ogy. His research interests include wireless
sensor network, peer-to-peer computing, and

pervasive computing. He is a senior member of the IEEE Computer
Society and the IEEE, and an ACM distinguished speaker.

Guihai Chen received the BS degree from
Nanjing University, M. Engineering from South-
east University, and the PhD degree from the
University of Hong Kong. He visited Kyushu
Institute of Technology, Japan in 1998 as a
research fellow, and the University of Queens-
land, Australia in 2000 as a visiting professor.
During September 2001 to August 2003, he
was a visiting professor in Wayne State
University. He is a distinguished professor

and deputy chair with the Department of Computer Science, Shanghai
Jiao Tong University. He has published more than 200 papers in peer-
reviewed journals and refereed conference proceedings in the areas of
wireless sensor networks, high-performance computer architecture,
peer-to-peer computing, and performance evaluation. He has also
served on technical program committees of numerous international
conferences. He is a member of the IEEE Computer Society and a
senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GUO ET AL.: EXPANDABLE AND COST-EFFECTIVE NETWORK STRUCTURES FOR DATA CENTERS USING DUAL-PORT SERVERS 1317

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

